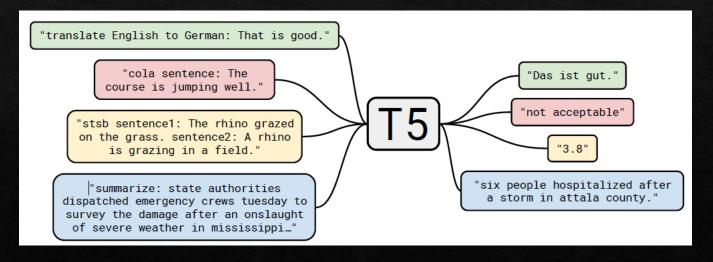
Moderat: Language Models for Fair and Explainable German Comment Moderation.

Isadora White

Background on T5 Model

Seveloped by Google to be ultimate transformer model for transfer learning

Text-to-Text model which can be used for many different tasks from translation to classification



T5 Training and Architecture

- Trained on C4 dataset: Colossal Clean Crawled Corpus
 - ♦ A massive English dataset with inappropriate words filtered out (aka swear words)
- Follows classic Encoder-Decoder Architecture (whereas BERT is an encoder-only model)
- ♦ Experimented with taking away the decoder portion of the T5 model as well

Accuracy Scores on the RP Datasets

Model Name	RP-Crowd-3	RP-Crowd-2	RP-Mod
bert-base-german-cased	0.8381	0.8027	0.7377
XLM-Roberta-base	0.8135	0.8044	0.7199
GermanT5/t5-efficient-oscar-german-small-el32	0.8476	0.8137	0.7367
GermanT5/german-t5-oscar-ep1-prompted-germanquad	0.8214	0.8338	0.7216
Google/mt5-small	0.7881	0.7756	0.7003
Google/mt5-base	0.8087	0.7938	0.7174
Encoder-T5	0.8476	0.809	0.7346

Results & Takeaways

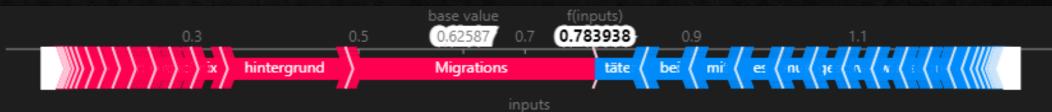
- Single language (German) models out-performed multi-lingual language models
- Encoder-decoder architecture outperformed encoder-only architecture
- Larger models outperformed smaller ones
- Solution States (RP-Mod) & Models perform better on Crowd-Worker datasets (RP-Crowd) than on Moderated Datasets (RP-Mod)

SHAP Values Overview

- Sexplanation method for ML algorithms
- Attribution: assigns each word in the comment a score
- The scores sum up to the probability that the comment is problematic
- Technique derived from game theory's Shapley values

Explanations & Patterns of False Positives

- State Shap Values to find words which contributed the most to false positive classifications
- ✤ Found top 200 words which contributed to the false positive predictions
- Top 20: [' Migranten',' Nazi', 'arme', 'Muslim','monster',
 'ackt',' Psychiater','sy',' Juden','gewalt','flüchtling']



classification Ich stelle mal folgende Vermutung an so wie es auch bei Tätern mit Migrationshintergrund hier immer dargestellt wirdEinzeltäter verwirrt traumatisiert hat nix mit den Rechtsextremen zu tun

Underrepresented Words

Harmless words are contributing greatly to problematic examples

Negative examples are underrepresented in the dataset

Word	Positive (hate) Examples	Negative Examples
Migranten	126	30
Arme	37	36
Muslim	59	25
Psychiater	10	1

Resolving Issue with False Positives

- Created a new validation dataset with the false positive words where 50% were positive and 50% were negative
- Resampled the dataset so that for each of the words which contributed to the false positives had an equal number of positive and negative examples
- ♦ Retrained the model on the new resampled dataset
- ♦ Accuracy on the new validation dataset increased from 50% to 66%

Intro to HASOC Competition

♦ Hate speech classification competition associated with the FIRE conference

Includes tasks for English, Hindi, Marathi, and German

Dataset consists of Tweets

♦ Test dataset becomes available on August 10th

Registration deadline is August 13th

Task 2B: ICHCL GERMAN Codemix Binary Classification.

A task focused on hate speech and offensive language identification is offered for German. It is a coarse-grained binary classification in which participants are required to classify tweets into two classes, namely: hate and offensive (HOF) and non- hate and offensive (NOT).

- (NOT) Non Hate-Offensive This post does not contain any Hate speech, profane, offensive content.
- (HOF) Hate and Offensive This post contains Hate, offensive, and profane content.

Ideas for Future Work on HASOC Dataset

♦ Verify the results from the RP datasets on HASOC dataset

Increase performance through data augmentation

- ♦ Using emojis as features
- ♦ Creating new comments by replacing words with their synonyms
- Cross-validate models trained on the different datasets