
Deep Learning Methods for Movement Classification and Artifact
Correction for Reliable Brain-Computer Interfaces

Annie Taylor
UC San Francisco

annie.taylor@ucsf.edu

Isadora White
UC Berkeley

isadoracw@berkeley.edu

Zheyuan Hu
UC Berkeley

huzheyuan@berkeley.edu

Shiangyi Lin
UC Berkeley

shiangyi.andrea.lin@berkeley.edu

Abstract—Stable neuroprosthetic control of robotic
devices is a central goal of brain-computer inter-
face (BCI) research. Electrocorticography (ECoG) is
a widely used neural recording technique which iso-
lates the brain surface voltages with sufficient com-
plexity for BCIs to decode movements and instruct ro-
botic control while offering improved reliability and
long-term stability over other recording techniques
[1]. Despite these successes, there still exist barriers
to long-term BCI use in a clinical setting, as these de-
vices may suffer from drift due to physical movement
as well as gradual changes in the neural representa-
tion of movement [2]. Computational approaches to
address these issues with signal stability could signif-
icantly improve the translational potential of ECoG-
based BCIs. Here, we describe the first use of trans-
former-based models to decode movement from hu-
man cortical data recorded with ECoG. We demon-
strate that (1) transformer-based autoencoders can
reproduce denoised signals and (2) a transformer-
based classifier performs well at movement classifi-
cation tasks. In addition, we demonstrate that our
MLP model which takes into account both temporal
and spatial aspects of ECoG signals can perform bet-
ter than the current State of the Art on the unfiltered
data.

Index terms—Artifact correction, autoencoders,
brain-computer interfaces (BCIs), transformers.

I. Introduction

BCIs have tremendous potential to improve the autonomy
of individuals with motor-impairments, largely through mo-
tor and speech prostheses Existing BCI devices employ a
variety of interfaces, from single unit spike-based record-
ings (microscale, e.g. Utah arrays), to local-field potentials
(LFPs) recorded from the surface of the brain (mesoscale,
e.g. ECoG) and even LFPs recorded from the skull sur-

face (macroscale, e.g. electroencephalography or EEG) [3].
Larger scale recordings are typically less invasive and more
stable over time, while more local recordings typically en-
code much richer activity, allowing for more precise move-
ment decoding [1]. Mesoscale recording approaches such as
ECoG are particularly promising for BCI applications [2].

While ECoG recordings are more stable than microscale
BCIs, long-term relability is still a barrier to clinical use
and user autonomy. For motor-impaired individuals to prac-
tically use BCI, changes in the physical connection or de-
coder must be infrequent. Even for ECoG devices, signal in-
stability and drift require technicians to frequently discon-
nect and reconnect devices and recalibrate decoding mod-
els. The primary forms of instability observed in ECoG sig-
nals are electrode drift and representational drift. Electrode
drift produces sharp, nonstationary changes in the recorded
signal, which can interfere with the decoding process. Rep-
resentational drift is a gradual change in the neural activity
underlying movement, occurring over days to weeks, which
necessitates recalibration of the decoder. We demonstrate a
variety of computational approaches to correcting artifacts
associated with electrode drift and suggest that extended ap-
plications of our models could also be useful for combatting
representational drift.

Prior work includes a non-deep learning model Kalman-
filter, applied to a similar ECoG dataset [2]; and deep learn-
ing methods such as LSTM applied to an augmented version
of the dataset we used in this project (unpublished). A major
contribution of our work is the application of transformers
for BCI use. Transformer-based models have been tested on
EEG recordings with notable success, generally outperform-
ing other architectures on similar tasks and datasets [4], [5],
[6] These results suggest that transformers are an ideal ar-
chitecture for decoding neural signals, yet to-date there is
no published literature using transformer-based approaches
for microscale or mesoscale BCI devices. Micro to mesoscale
recordings are much more broadly used for BCI, as prior

mailto:annie.taylor@ucsf.edu
mailto:isadoracw@berkeley.edu
mailto:huzheyuan@berkeley.edu
mailto:shiangyi.andrea.lin@berkeley.edu

work has demonstrated that local signals are critical for de-
coding neural signals associated with movement [3]. Here,
we apply transformers to ECoG recordings from human sen-
sorimotor cortex for the first time.

II. Materials and Methods

Figure 1: Left: screenshot of virtual robotic arm used in
human experiments for cortical robotic control. Imagined
movements and the corresponding degree-of-freedom are
listed in underlying table, with each mapped to one of seven
classes for decoding. Right: schematic of ECoG grid place-

ment with example voltage traces.

Figure 2: Exemplar traces (1s) of neural signals (mV)
recorded from individual ECoG channels in both the high
and low frequency bands. From left to right, we have chan-
nels 5, 51, 97; the first row is high frequency, and the second

row is low frequency.

Figure 3: Spatial layout of signal from ECoG grid, plotted for
3 timesteps (0.05, 0.51, 0.97s from left to right). The first row
is high frequency, and the second row is low frequency. The

color intensities correspond to voltage in mV.

A. Dataset

In prior work, a 128-channel ECoG array was implanted
in a single patient with severe motor impairment to enable
recording of neural signals from sensory and motor cortices
and raw data was referenced and filtered during acquisition
[2]. We used a dataset with prefiltered ECoG signals paired

with labels corresponding to one of seven classes mapped to
an imagined movement. Labels were obtained by instructing
the patient to imagine or attempt a specific movement (e.g.
tongue, right thumb, left leg, etc.) and recording signal dur-
ing the attempt. Instructions were provided for seven differ-
ent movements and each movement class was then mapped
to a degree of control (± x, ± y, etc.) for a 7-DoF robotic arm
(see Figure 1).

Each ECoG sample incorporates approximately 1 second
of recorded data, downsampled from an acquisition rate
1kHz to 100Hz, and split into 100 equally spaced timesteps
(Figure 2). For each timestep, there there were 256 recorded
neural features. Recordings from each of the 128 ECoG
channels were bandpass filtered into two features, one for
low frequency (< 25Hz) and the other high-gamma frequen-
cyIz (>80Hz) band, for a total of 256 features as shown in
Figure 3. The goal of classification is to map each ECoG sig-
nal to the correct movement class and use the decoding out-
puts for robotic control.

Figure 4: t-SNE and PCA of the first two components of
sampled 300 datapoints. These plots shows that there are no

simple pattern in our code.

B. Data Imputation and artifact correction

To develop models capable of handling signal artifacts in
our data that disrupt decoding accuracy, we tested three pri-
mary strategies to remove these artifacts and impute the un-
derlying signal. Examples of signal artifact are shown as a
heatmap in Figure 5 and as timeseries in Figure 6. Going
forward, we will refer to original data as raw data.

1. 𝑅𝑎𝑛𝑑𝑜𝑚 𝑛𝑜𝑖𝑠𝑒 𝑖𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛: First, compute feature-
wise mean ⃗𝜇 and overall standard deviation 𝜎. Then,
we computed updated feature-wise mean 𝜇∗ and over-
all standard deviation 𝜎∗ using only the data within
the range of ⃗𝜇 ± 4𝜎. For every data point outside of
this range, we replace the data with random normal
noise ~Ν(⃗𝜇, 𝜎∗). Repeat this same process again with
10 instead of 4 to remove any potential remaining
outliers. Figure 7 shows an example of random noise
imputation, applied to the example artifact from Fig-
ure 5. This imputation method aims to remove artifact
with noises within normal range so that the model

will not be able to overfit to artifact or rely too heavily
on our artificial correction.

2. 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑖𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛: First, compute fea-
ture-wise mean ⃗𝜇 and feature-wise standard deviation
�⃗�. We project the signal to fourier basis and remove
frequencies with amplitude more than ⃗𝜇 + 4�⃗�. This
strategy is shown in Figure 8. We attempted this im-
putation method since we can treat signal wave func-
tions and fourier transform would be able to decom-
pose them.

3. 𝑆𝑖𝑚𝑝𝑙𝑒 𝑐𝑙𝑖𝑝𝑝𝑖𝑛𝑔: Here we apply Occam’s Razor! After
inspecting the data, we found that most of the signal
is roughly mean-centered and in a range of ±15. For
instances where the signal exceeded ±30, we clipped
signal at ±30 respetively. Clipped data is shown in
Figure 9.

Figure 5: Representative raw signal with artifact, shown at
three different timesteps. The artifact is apparent in the cen-
ter image, producing a rescale in the colorbar that makes the

signal at other timesteps difficult to visualize.

Figure 6: Representative raw signal with artifact, shown at
three different channel and both frequencies. The artifact is
apparent in the center of all images, where a large peak can

be seen.

Figure 7: Signal from Figure 5 but imputed with random
noise. After replacing the artifact with smaller random

noise, smaller signals are visible in the image.

Figure 8: Signal from Figure 5 but imputed using fourier
transformation. After removing the fitted frequency corre-
sponding to the artifact, smaller signals are visible in the im-

age.

Figure 9: Signal from Figure 5 but clipped at ±30mV. After
clipping the signal, smaller signals are visible in the image.

Figure 10: Overlay signal of raw and imputed signal of Fig-
ure 6, zoom in between [−40, 40]. Blue solid line denotes
the raw signal, orange dash line denotes the random noise
imputation, green dot line denotes the fourier transform im-
putation, and red dashdot line denotes the clipped signal re-

spectively.

C. Model Architectures

1) Transformer Autoencoder:
Our autoencoder model uses an encoder-decoder Trans-

former architecture with multi-head self-attention and feed-
forward networks for each layer [7]. The model is trained
with reconstruction loss

1
𝑛

∑
𝑛

𝑖=1
(‖𝑥𝑖 − 𝑥𝑖‖

2
2) (1)

Both the encoder and decoder employ 8 self-attention
heads (𝑑𝑘 = 512) with fully-connected feedforward layers
(𝑑feedforward = 2048) for 6 total layers. Preceding the encoder,
we use a linear embedding layer between the input and the
first encoding layer. To incorporate sequential inductive bias
into the model, we add positional encodings (corresponding
to the time dimension of our dataset) directly to the input
embedding. Encoder outputs were passed directly to the de-
coder. Finally, the ouput layer in our autoencoder was a sim-
ple linear layer, projecting decoder output back to the orig-

inal sample dimenisons (512 → 256). The number of para-
meters are summarized in Table 1.

2) Basic Classifier:
We have build a simple classifier head that can accepts

raw data, imputed data, or encoded data generated by our
autoencoder as inputs.

Version 1: In this classifier, we performed a global average
pooling across the time steps followed by a linear classifica-
tion layer to output logits of the seven classes’ preditions.

Version 2: We first apply a 1x1 convolution to reduce each
channel’s size. Then, we performed global average pooling
across the timesteps and global average pooling across the
channels seperately. The results are concatenated the results
together and passed into a linear layer to output logits of the
seven classes’ preditions.

Version 3: The third version is similar to the second ver-
sion with several additional layers. The concatenated global
averages are passed into a linear projection layer, a Tanh ac-
tivation before, and a dropout layer in the order before the
final linear classification layer.

3) Transformer Classifier:
Transformer is a natural extension to the baseline LSTM

model. Our transformer classifier employs a similar archi-
tecture to our autoencoder, but with the transformer decod-
ing layer replaced by a single output layer that performs
pooling over the feature dimension of the final encoder out-
put, followed by a ReLU activation layer, layer normalization
(𝜀 = 1𝑒 − 5), dropout (𝑝 = 0.1), and a single linear layer for
classification. For classification, we tried both passing full-
dimension output encodings to the classification layer as
well as including a class token in our embedding and only
passing the encoded class token to the classification layer.
In some cases we also added causal masking during the for-
ward pass, forcing the model to generate predictions only
with earlier features in the sequence. The model is trained
with cross-entropy loss:

−
1
𝑛

∑
𝑛

𝑖=1
(𝑝(𝑥𝑖)(log 𝑝(𝑥𝑖))) (2)

We include important architecture choices for the trans-
fromer-based autoencoder and classifier in Table 1.

4) LSTM Classifier (Baseline):
Long Short Term Memory (LSTM) was used for the classi-

fication of robotic actions in an unpublished manuscript. A
LSTM architecture incorporates state in two different ways:
the long-term memory and short-term memory states. The
learn gate determines which parts of short-term memory are
relevant and the forget gate determines which parts of the
long term memory state should be forgotten [8]. LSTM is
a suitable model for our task becuase its architecture is de-
signed to capture long-term dependencies in sequential data
while avoiding the vanishing gradient problem. We trained

this model to the imputed data we generated above to create
a baseline comparison. Due to the confidential nature of the
unpublished work, we will only report the results and not
the details of implementaion and hyperameter choices.

annie check for the best hyper parameter

Transformer
Autoencoder

Transformer
Classifier

Optimizer AdamW AdamW

𝑑𝑘 512 512

𝑛𝑙 6 6

𝑛ℎ 8 4

𝑑𝑜 2048 2048

learning rate 𝜂 1𝑒 − 4 1𝑒 − 4

weight decay 𝛾 0.01 0.005

epochs 100 300

Table 1: Hyperparmeters used for transfromer autoencoder
and transformer classifier.

III. Results

Next, for each of the models we designed, we tried dif-
ferent training approaches using combinations of the raw,
imputed, and encoded datasets as inputs. We reported the
best result among the hyperparameters we attempted in the
section below; the details of hyperparameter tuning can be
found in the appendix

A. Autoencoder Experiments

We ran four main experiments with the autoencoder
model. In the first experiment, the model optimizes to re-
construct the original raw inputs. In the other three experi-
ments, the model is trained to reconstruct the imputed sam-
ples corresponding to the raw data as inputs. The latter ones
are intended to test the hypothesis that transformer autoen-
coders can be trained to perform artifact corrections. For the
results shown in Table 2, we used the same set of learning
parameters described in Table 1. We have included the re-
sults with different hyperparameters in the appendix.

The training loss is the MSE reconstruction loss computed
as

1
𝑛

∑
𝑛

𝑖=1
(‖𝑥 − ̂𝑥‖2

2) (3)

where 𝑥 is the reconstruction target and ̂𝑥 is the decoder’s
output. At evaluation time, reconstruction loss is measured
between the model’s outputs and the raw inputs. We exclude
the NaN, losses less than 1 or greater than 99 percentile
losses in evaluation as there are extremely large values in the

raw inputs that are excerbated by the MSE Loss and would
dominate the MSE Loss if included.

Input Reconstruc-
tion Target Training Loss Eval Loss

Raw Raw 43409.10 19811.73

Raw Clipped 336.86 𝟑𝟓𝟏.𝟗𝟔

Raw Random Noise 𝟏𝟎𝟕.𝟔𝟗 1026.93

Raw Fourier 3380.18 198.89

Table 2: Losses for autoencoder variations trained with raw
inputs and imputed data as reconstruction targets compared
to raw data as target. The clipped imputation as reconstruc-

tion target achieves the best validation loss.

Figure 11: PC1 and PC2 of autoencoder embeddings trained
with different sets of inputs (𝑥) and template samples (̂𝑥);
(A) raw to raw, (B) raw to clipped, (C) raw to fourier, (D) and
raw to random noise imputation. Note that the points are
much more evenly spread of then the PCA of the raw data
Figure 4, suggesting our autoencoder is learning to remove

some outliers.

B. Classifier Experiments

To test performance of our classifiers, we ran a series of
experiments training and testing models with raw data, each
data imputation approach as we did with the autoencoder,
and the encoder output from our autoencoder before. In ad-
dition, we considered the impact of causal masking on de-
coding accuracy and the impact of appending a classifica-
tion token to the input. Details of hyperparameters tuning
can be found in the appendix. In summary, we found that
including classification token and causal masking were very
crucial for improving classification accuracy and improving
training stability. When we train a model without a classifi-
cation token, we found that training was very unstable and
unpredictable. We believe that this is because the classifica-

tion token allowed the model to extract more meaningful in-
formation for classification.

Additionally, we evaluated classifier designs using the
output from a frozen autoencoder’s encoder trained with
raw-to-clipped data. This choice is based on the autoencoder
performance analysis from previous part. The three different
classifier models are described in the model architectures
section. We report that the Basic v3 model works the best as
classification heads, using either the autoencoder’s encoder
output or directly training on the raw inputs. Notably, with
the best classifiation head design, training on autoencoder’s
encoder outputs outperforms the raw data inputs by almost
2%. We hypothesize that the classifier head benefits from
the denoising effect from our autoencoder, such that outliers
in the inputs can be classified more accurately. Results are
summarized in Table 3.

Classifier
model Input Accuracy Validation

Loss
LSTM Raw 74.78% 577.275
LSTM Clipped 75.54% 572.005
LSTM Random 74.26% 583.484

LSTM Fourier Trans-
form 76.66% 562.507

Transformer Raw 𝟕𝟖.𝟏𝟐% 𝟎.𝟔𝟗𝟒𝟗
Transformer Clipped 76.36% 0.7196
Transformer Random 75.65% 0.7144

Transformer Fourier Trans-
form 75.85% 0.7129

Basic v1 Clipped En-
coder 57.72% 1.182

Basic v2 Clipped En-
coder 74.21% 0.7578

Basic v3 Clipped En-
coder 𝟕𝟖.𝟓𝟖% 𝟎.𝟔𝟔𝟐𝟑

Basic v3 Raw 76.86% 0.6735
Table 3: Accuracy and final losses for decoders trained and

tested with different types of input data.

IV. Discussion

Accurate and stable decoding frameworks are essential
for the development of translational BCI. Our initial work
demonstrates that transformer based classification and arti-
fact correction strategies could be effective in BCI research,
with the potential to significantly improve state-of-the-art
decoding methods. We found that imputating the data in the
three different methods described in the paper, was able to
significantly reduce the reconstruction loss for the autoen-
coder. In particular, the clipped data imputation performed
the best and that the autoencoder filtering from raw data to

clipped data was able to remove some of the outliers using
the first two PCA dimensions.

The use of autoencoder are significant in two ways.
First, by introducing artifact corrected targets we encourage
the autoencoder to learn to ignore artifacts, producing the
cleaner data that can be utilized by the downstream classi-
fier. A more robust computational model will relax the phys-
ical constraint associated with ECoG device, saving time for
clinician to disconnect and reconnect the device. Secondly,
learning the underlying pattern of ECoG data is itself an in-
teresting question. By learning the underlying latent space,
there is a potential to uncover the pattern of representational
drift, which is an active area of research. Although we did
not perform explicit analysis on this front, this project can
serve as a starting point for more future work.

When creating our classifier for ECoG data we took many
different approaches. Our best performance was obtained
by freezing the encoder layer of the autoencoder on clipped
data and performing linear probing to classify the robotic
motions. The second best performance was obtained by a
transformer classifier on the raw data. However, a simple
linear model which combined both positional and temporal
information was still able to match the performance of the
state of the art LSTM classifier. Ultimately, we think that
this shows that the most critical information for movement
decoding in the ECoG signal is represented in the temporal
and spatial characteristics of the data and thus high dimen-
sional models like transformers might only bring limited
benefits to standard decoding methods that also incorporate
spatiotemporal information.

V. Note for reviewers

Code: Our github repo is currently private as we are
preparing for submission. It contains our artifact correction,
models, training loop, and plottting code: https://github.
com/icwhite/ecog_bci.

Data: Since we used clinical data, our dataset is confi-
dential. If you are a reviewer and need data access, please
contact the authors (annie.taylor@ucsf.edu) directly and we
would be happy to share a subset of the data.

References

[1] Chao, “Long-term asynchronous decoding of arm motion using elec-
trocorticographic signals in monkey”, Frontiers in Neuroengineering,
2010, doi: 10.3389/fneng.2010.00003.

[2] D. B. Silversmith et al., “Plug-and-play control of a brain–computer in-
terface through neural map stabilization”, Nature Biotechnology, no. 3,
pp. 326–335, Mar. 2021, doi: 10.1038/s41587-020-0662-5.

[3] E. F. Chang, “Towards Large-Scale, Human-Based, Mesoscopic Neu-
rotechnologies”, Neuron, no. 1, pp. 68–78, Apr. 2015, doi: 10.1016/j.neu-
ron.2015.03.037.

[4] D. Kostas, S. Aroca-Ouellette, and F. Rudzicz, “BENDR: Using Trans-
formers and a Contrastive Self-Supervised Learning Task to Learn
From Massive Amounts of EEG Data”, Frontiers in Human Neuro-
science, p. 653659, Jun. 2021, doi: 10.3389/fnhum.2021.653659.

[5] J. Xie et al., “A Transformer-Based Approach Combining Deep Learn-
ing Network and Spatial-Temporal Information for Raw EEG Classifi-
cation”, IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering, pp. 2126–2136, 2022, doi: 10.1109/TNSRE.2022.3194600.

[6] P. Deny and K. W. Choi, “Hierarchical Transformer for Brain Computer
Interface”, Gangwon, Korea, Republic of: IEEE, Feb. 2023, pp. 1–5. doi:
10.1109/BCI57258.2023.10078473.

[7] A. Vaswani et al., “Attention Is All You Need”, 2017, doi: 10.48550/
ARXIV.1706.03762.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural
computation, no. 8, pp. 1735–1780, 1997.

VI. Appendix

AutoEncoder Hyperparameter Choice:

Option 1 Option 2

Optimizer AdamW AdamW

𝑑𝑘 𝟑𝟐 𝟓𝟏𝟐

𝑛𝑙 6 6

𝑛ℎ 8 4

𝑑𝑜 2048 2048

learning rate 𝜂 1𝑒 − 4 1𝑒 − 4

weight decay 𝛾 0.01 0.005

epochs 100 300

input raw clipped

target raw clipped

training loss 3772.83 336.86

We experimented two different latent representation sizes
(𝑑𝑘) for transformer AutoEncoder. In typical AutoEncoders,
such as the ones for images, the latent representation size
is smaller than the input dimensions, as only a subset of
features is useful for downstream classification tasks. How-
ever, our input samples are high dimension time series data,
reducing latent dimensionality could actually harm the per-
formance. One way to rationalize this is to imagine classifi-
cation as finding linearly seperable hyperplanes in the latent
space. As we see in earlier sections of this report, the visual-
ization of the low dimensional projection of our input data
is clustered closely and noisy. So it makes more sense to pro-
ject the inputs to a higher dimensions and hope it becomes
more seperable in that space.

Transformer Classifier Hyperparameter Choice:

https://github.com/icwhite/ecog_bci
https://github.com/icwhite/ecog_bci
annie.taylor@ucsf.edu
https://doi.org/10.3389/fneng.2010.00003
https://doi.org/10.1038/s41587-020-0662-5
https://doi.org/10.1016/j.neuron.2015.03.037
https://doi.org/10.1016/j.neuron.2015.03.037
https://doi.org/10.3389/fnhum.2021.653659
https://doi.org/10.1109/TNSRE.2022.3194600
https://doi.org/10.1109/BCI57258.2023.10078473
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762

Default Parameters

Optimizer AdamW

𝑑𝑘 512

𝑛𝑙 6

𝑛ℎ 8

𝑑𝑜 2048

Dropout None

Casual Masking None

learning rate 𝜂 1𝑒 − 4

weight decay 𝛾 0.005

epochs 300

input Raw

target Class labels

Accuracy 75.44%

Table 4: Default Transformer Classifier Hyperparameters

Parameters changed Accuracy

𝑑𝑘 = 512 75.05%

𝑑𝑘 = 1024 76.74%

𝑑𝑘 = 2048 73.99%

𝑛𝑙 = 4 75.93%

𝑛𝑙 = 6 75.04%

𝑛𝑙 = 8 76.42%

𝑛ℎ = 4 77.11%

𝑛ℎ = 8 74.02%

𝑑𝑜 = 512 75.32%

𝑑𝑜 = 1024 74.27%

𝑑𝑜 = 2048 76.22%

𝑑𝑜 = 4096 76.95

Table 5: Transformer Hyperparameters used for Tuning

In Table 4, we showed our default hyperparameters of
the transformer classifier. We perform hyperparameter tun-
ing by modifying one parameter at the time, and the re-
sult are displayed in Table 5. Each row in Table 5 core-
sponds to a model. The hyperparameters values correspond
to the default values unless otherwise specified. For exam-
ple, the first row we show the model with 𝑑𝑘 = 512 with
other default hyperparameters: AdamW optimizer, 𝑛𝑙 = 6,
𝑛ℎ = 8, 𝑑𝑜 = 2048, no dropout, no casual mask, 𝜂 = 1𝑒 − 4,

𝛾 = 0.005, 300 epochs, raw input. The accuracies are
75.05%, shown in the last column.

	Introduction
	Materials and Methods
	Dataset
	Data Imputation and artifact correction
	Model Architectures
	Transformer Autoencoder
	Basic Classifier
	Version 1
	Version 2
	Version 3

	Transformer Classifier
	LSTM Classifier (Baseline)

	Results
	Autoencoder Experiments
	Classifier Experiments

	Discussion
	Note for reviewers
	References
	Appendix

